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The Schroedinger Equation for S-type states of the helium atom, which is an elliptic 
partial-differential equation, is converted to a set of finite-difference equations, which are 
then solved by an iterative technique. The total energy of the ground state and first- 
excited state are calculated to be -2.90360 and -2.17414 a.u., respectively, as compared 
to the known accurate values of -2.90372 and -2.17522 au. due to Pekeris. The 
results for the ground state include energy expectation values, and expectation values 
of other terms commonly used to test the correctness of the wavefunction. Reasonable 
agreement is obtained between values obtained by this work and that of Pekeris with 
the differences being within the known numerical error of the iterative method. 

I. INT~0000T10N 

Recently it was suggested by Birkhoff [l] and later by Young [2] that it would be 
both interesting and desirable to supplement the many ingeneous techniques 
developed to obtain approximate solutions to the Schroedinger differential equation 
by a method that uses strictly numerical techniques. This paper presents the theory 
and procedure for the application of the finite-difference technique to the helium 
problem. The technique presented here has been applied to other elliptic partial- 
differential equations, but never to the Schroedinger equation. In addition, most 
numerical methods that are applied to partial-differential equations use Cartesian 
coordinates to simplify the iteration matrix, but the nature of the potential in an 
atomic problem requires a solution in spherical coordinates. Thus, this work is 
unique in two respects; it is the first application of purely numerical methods to 
solve the Schroedinger equation, and second, the problem is formulated in spherical 
coordinates instead of the standard Cartesian coordinates. Results of this method 
are compared with the known accurate results of Pekeris [3]. 
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Ideally, this technique is very general; that is, the only approximations involved 
are the replacement of a differential equation with a set of finite-difference 
equations, and the error involved in this approximation could then in theory be 
made suitably small. In practice, however, the technique is restricted by computer 
memory size and computer time cost. 

Perturbation and variation techniques can yield good results for the helium 
problem, but unless the number of terms is quite large correlation effects are not 
properly taken into account. Using the present method, if the mesh size is suitably 
small, all correlation is properly treated. Therefore,the results can be compared 
directly with experiment, and any numerical error should be explainable from the 
&rite-difference approximation. 

II. FORMULATION OF PROBLEM 

The time-independent Schroedinger equation for helium is 

or in atomic units (fi = in, = e2 = 1) 

I2 
-57,+,2-+-$++!Y=EyI. (2) 

In spherical polar coordinates this equation has the six independent variables 
Pl 9 4 > $1 9 r2 9 02 3 MT w ‘c hl h can be reduced to the three [4, 51 (rl , r2 , r,,} or 
{rl , r, , O} for the ground state and all S-type states. If the angle 8, between the 
vectors r, and r, is chosen in favor of the variable r12, and x = rlroY is introduced, 
the Schroedinger equation for the ground state and all S-type states becomes 

1 a2 [ I - Z ar,2 + i3r22 “+(+++)(&g+g)! 

2 ---- 
r1 I', -I-$],=&. (3) 

The total wavefunction for fermions must be antisymmetric upon electron 
exchange. Since the ground state of helium is known to be a singlet spin state 
(antisymmetric), then x, in order to be an admissable ground state solution, must 
be symmetric. Thus, making x a symmetric solution of Eq. (3) yields a solution 
compatible with the Pauli principle and the correct spin eigenfunction. For the 
first excited state (a triplet state) this can be accomplished by making x anti- 
symmetric. 
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III. METHOD OF SOLUTION 

Equation (3) is transformed into a set of finite-difference equations by replace- 
ment of the derivatives with three-point central-difference formulas, viz 

fi” = (fdfl - 2f;- +.Ll)l~2, and L’ = M+l -h-Wk 

where h = ri+l - ri . 
By use of this scheme, Eq. (3) becomes 

-%Xi+l.i.k - 2Xi.i,k + xi-l.d(~rl)2 

- HXi.i.lc+1 - 2Xi.i.k + Xd,j.k--lY(Ar2)2 

- HWi2 + llrk2)(Xi,i+l,k - Xi.j-l,S)l(2 tan ej 4 

- Hllri2 + llrk2)(Xi.i+l.k - 2Xi,j.k + Xi,i-l,7c)l(Ae)2 

+ [-2/ri - 2/r, + l/(r? + rk2 - 2rir, cos tlj)l12 - E]x~,~,~ = 0, (4) 

where ri = i Ar, , rg = k Ar, , and Bj = j AtI. The boundary conditions on x 
require that it vanish whenever the radius of either or both electrons becomes zero 
or infinity. By use of both hydrogenic and correlated test functions it was deter- 
mined that the domain of rl and r2 could be adequately covered by letting the 
maximum radius be 6.0 for the ground state and 12.0 for the first excited state. 
Therefore, the boundary conditions can be written as 

~(0, 6 r2) = x(h , 8, 0) = x(o, 8, 0) = 0, 
~(6.0, 6 r2) = x(rl, 8, 6.0) = x(6.0, 0, 6.0) = 0, 

(5) 

for the ground state, and 

~(0, 8, r2) = x(rl , 8, 0) = x(o, 8, 0) = 0 

x(12.0, 4 r2) = x(rl , 8, 12.0) = x(12.o, 8, 12.0) = 0 
(6) 

for the first excited state. The domain of 8 is 0 < 8 < V, but due to the singularities 
in the differential equation at 8 = 0 and 19 = n, these points will be avoided by 
a small finite increment St?. Furthermore, Eq. (4) cannot be used near these extremes 
because the central-difference formula implies knowledge of points lying on either 
side of the point being calculated. Therefore, a forward- and backward-difference 
scheme must be applied to the theta differentiation at the end points. In this work 
a five-point scheme was chosen in order for the numerical error to be approximately 
the same as for the three-point central-difference scheme used elsewhere. 
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The third and fourth terms in Eq. (4) become, for theta near zero, 

--$(1/r? + llfs”)(-25f, + 48f, - 36jZ t 16~~ - 3f4)/(12 A0 tan Se), 

--:(l/ri” + l/r~“>(35f - 104f1 + 114J’ - 56f + 1 lfJ12(A8)2, 

where 

AJ = X(‘i 3 w f-i;?, fi = x(ri . 68 + de, r&. 

and for points of theta near n 

-B(llrf” -I- llr,*)(25f - 48f, + 36jZ - 16f + 3f,/(12 68 tan(n - Se)), 

-a(l/ri2 i- l/rk2)(35f - 104f, + 114JZ - 56f, + 11f0)/12(48)2, 

where 

h = x(ri , r - se, 4, f2 = x(ri , r - se - de, r,) ,.... 

Coupling the boundary conditions (Eqs. (5) and (6)), and Eq. (4) with the suitable 
changes near theta equal zero and v gives a set of linear equations in the unknowns, 
xi,j,k . The ~01 u t ion of this set for a particular eigenvalue E produces an approxi- 
mate solution to the Schroedinger equation. Furthermore, if the eigenvalue E, 
is replaced with the expectation value of the Hamiltonian after a set number of 
iterations, and the iteration process continued until the energy and eigenfunction 
are self-consistent, both the approximate eigenvalue and eigenfunction are 
obtained. 

To cover 6.0 atomic radii in rl and r2 space, Z- radians in e-space, and still have 
a small mesh size, many points had to be taken. By use of hydrogenic test functions, 
the mesh sizes, integration point schemes, and derivative point schemes were 
developed to give expectation values of the kinetic and potential energies to nearly 
six signiiicant figures. This gave the following mesh sizes for the ground state: 

Au, = Ar, = 6184, first 12 intervals, 
= 6142, second 12 intervals, 
= 6121, last 12 intervals 

At9 = 7~125 radians, all theta intervals. 

This leads to a wavefunction array, (37, 25, 37), containing 34,225 values. Of 
these 34,225 values 3700 are known zero boundary values and the remaining 30,525 
are unknowns. 
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Similar considerations for the triplet state gave: 

dr, = dr, = 12/132, first 12 intervals, 
= 12/66, second 12 intervals 
= 12133, third 12 intervals 
= 12/16.5, last 6 intervals 

A8 = ?r/37 radians, all theta intervals. 

This leads to a wavefunction array, (43, 37, 43), containing 68,413 values. Of these 
68,413 values 6364 are known zero boundary values and the remaining 62,049 are 
unknowns. Direct elimination techniques are known to be inefficient and uneffective 
for linear systems of these sizes; therefore, a relaxed iterative technique was chosen. 
For the helium problem as presented here, the Gauss-Seidel point iterative method 
with zero relaxation was found to optimize the convergence rate. 

The expectation value of the Hamiltonian operator in Eq. (3) is evaluated in 
three parts: kinetic energy, electron-electron potential energy, and electron- 
nuclear potential energy. The kinetic energy operator is given by 

I(=-1 a2 
2 ar12 + ar22 I aa+ (+++-)(&$sine$)l. (7) 

To reduce the numerical error in the calculation of the expectation value of this 
operator, each term was integrated by parts. This operation replaces the second 
derivatives by the squares of first derivatives. The resulting equation is 

O-9 

The first derivatives are evaluated numerically using a seven-point difference 
scheme and the integration performed by the seven-point Newton-Cotes formula. 

The expectation value of the electron-electron potential energy presents more 
of a difficulty than the kinetic energy or the electron-nuclear potential energies. 
The reason is the function 

f-2 = (r12 + r2 - 2 cos tYrlr2)-1’2 (9) 

is sharply spiked when rl z r2 and 0 small. To obtain numerical accuracy on any 
rapidly varying function a high density of points is needed, but the number of 
points is limited by the finite size of the computer memory. The larger program 
used in this paper’s calculations was run on a Honywell 636 computer and used 

581/21/z-6 
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approximately 90 “/6 of the user available space. Consequently, any further increase 
in the number of points was impossible. In order to achieve an accuracy similar 
to that obtained for the other energies, single and double interpolation schemes 
were used on the wavefunction to effectively double the number of points for x 
in r1 and r2 space. Points at crossings of the gridlines represent values of x that 
are are known (after solving the set of linear equations), and points midway between 
gridpoints represent values of x that are interpolated. Values lying on the gridlines 
are obtained using seven point single interpolation, and those lying between the 
gridlines by 49 point double interpolation. It is important to point out that it is the 
smooth wavefunction that is interpolated, not the spiked integrand in (l/r,,) 
because the interpolation scheme would have the same difficulty fitting the 
integrand that integration schemes would have. Results of the interpolation of x 
used to evaluate (l/r,,) on a one-parameter variational wavefunction will be given 
in the next section to illustrate the improvement obtained over the uninterpolated 
result for (l/r,,). 

The electron-nuclear potential energies (-2/r,) and (-2/r,) cause no serious 
numerical difficulties since the integrand for these integrals vanish if either or 
both rl and r2 are equal to zero. 

IV. RESULTS 

By use of x given by 

x = r,r, exp{- 1.6875(r, + r&, WV 

all the energy subroutines were checked for accuracy. These produced energy 

TABLE I 

Comparison of Correct Analytic Results with Those Obtained 
Numerically on a One-parameter Test Wavefunction 

operator Analytic Numerical 

<Wd 1.054688 1.054672= 
1 .05624gb 

--2<llr, + l/r,) -6.750000 -6.749995 
00 2.847656 2.847667 
<H> -2.847656 -2.847656 

a This calculation uses double and single interpolation of the wave- 
function to increase numerical accuracy. 

b No interpolation. 
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expectation values that agreed with the analytic result to nearly six significant 
figures. The results of these calculations are given in Table I. It is important to 
note that a significant improvement is obtained for the electron-electron potential 
energy when interpolative techniques are employed. 

Since an iterative technique was used to solve the set of linear equations, con- 

TABLE II 

Energy Expectation Values at Various Stages of Iteration for the Helium Ground State 

Number of 
iterations <K) <W-d 2<l/r, + l/ra> -<H> 

0 2.8471 1.0547 6.7500 2.84766 

300 2.9956 0.9750 6.8719 2.90125 

600 2.9564 0.9604 6.8198 2.90303 

900 2.9355 0.9533 6.7922 2.90345 

1200 2.9254 0.9498 6.7788 2.90356 

1500 2.9205 0.9481 6.7722 2.90359 

1800 2.9180 0.9472 6.7689 2.90359 

2100 2.9168 0.9468 6.7672 2.90360 

2400 2.9162 0.9466 6.7663 2.90360 

2700 2.9158 0.9465 6.7659 2.90360 

Pekeris 2.9037 0.9458 6.7532 2.90372 

TABLE III 

Differences in the Energies Tabulated in Table II 

AN A<K) 411r12) 2d<llr, + l/r,> A<H) 

1200900 

1500-1200 

18Ml-1500 

2100-1800 

2400-2100 

2700-2400 

0.1480 0.0796 0.1219 0.0546905 

0.0392 0.0147 0.0521 0.0017585 

0.0209 0.0071 0.0276 0.0004419 

0.0101 0.0035 0.0134 0.ooo1064 

0.9049 0.0017 0.0066 0.8000279 

0.0025 0.0009 0.0033 o.OOQOO72 

0.0012 0.0004 0.0017 o.OOoOO20 

0.0006 0.0002 0.0009 o.OcfmOO5 

0.0803 0.0001 0.0004 O.OOOoOOl 
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vergence must be demonstrated. This is done by listing, in Table II, the number of 
iterations and the corresponding energies at that particular stage in the iterative 
process. Also included are the known accurate results of Pekeris, so that accuracy 
determinations can be made. Table III contains the differences in the tabulated 
energy values shown in Table II, so that one can quickly observe the convergence. 

TABLE IV 

Total Energies Obtained by Variational Techniques for the Ground State of 
Helium Compared with Present Results 

Number of 
parameters Total energy Reference 

___- 
1 

1 

2 -2.8896 

2 -2.90142 

-2.84765626 

-2.8756614 

-2.90224 

-2.90338 

-2.90338 

-2.90360 

Hylleraas (1929) 

Hylleraas (1929), Scherr 
and Silverman (1960) 

Hylleraas (1929) 

Green, Lewis, Mulder, 
Wyeth, and Wall (1954) 

Hylleraas (1929) 

Hylleraas (1929) 

Schwartz (1956, 1960) 

Present Work 

10 -2.90360 Chandrasekhar er al. (1953) 

1078 -2.90372 Pekeris (1958, 1959) 

The accepted value for the nonrelativistic ground-state energy of helium is 
-2.90372 obtained by Pekeris [3] using 1078 variational parameters. This work 
obtains -2.90360 for this energy which is in error by 0.004 ‘A. Table IV contains 
a partial list of ground-state energies from previous calculations [6]. This list is 
by no means exhaustive, but does contain enough values to allow one to compare 
this calculation with others that have been done. The accuracy of the total energy 
obtained by this work seems to compare well with a variational calculation using 
ten parameters. 

To gain further knowledge as to the accuracy of the wavefunction, other expec- 
tation values have been calculated. The set used in this regard is the set 
(rin) 3 (Pj, n = -2, -1, 1, 2. To determine the accuracy of the subroutine 
written to perform the calculation <r”), the wavefunction given by Eq. (IO), was 
again applied as a test function. The results of this calculation are presented in 
Table V. Two features are evident in this table. First, interpolation does not 
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TABLE V 

Numerical Expectation Values for the Operators r”, n = -2, - 1, 1, 2 for 
for the One-Parameter Test Wavefunction 

Operator 
Numerical result 

without interpolation 
Numerical result 

with interpolation 
Analytic 
result 

<r-9 5.29322 5.49426 5.6953 1 

(y-l\ I 1.68750 1.68750 1.68750 

<rV 0.88889 0.88885 0.88889 

<r2> 1.05348 1.05348 1.05350 

TABLE VI 

Numerical Expectation Values for the Operators r”, n = -2, 
- 1, 1, 2 for the iterative solution 

Operator 
Numerical result 

without interpolation 
Numerical result 
with interpolation 

Pekeris 
result 

<r-V 5.566 5.807 6.018 

<r-9 1.6915 1.6915 1.6883 

<rl> 0.9283 0.9283 0.9295 

V> 1.1906 1.1906 1.1935 

improve the values of (r-l), (rl), and (r2); and second, the value of (r-2) is 

improved by interpolation, but is still in error by 3.5 %. Thus, the values of (r”j, 
n = - 1, 1,2 will serve as a test of the accuracy of x but (r-2) values would not. 
Tabulated results of these operator expectation values for the iterative solution are 
given in Table VI, with the Pekeris values listed for comparison. The results are 
surprisingly good considering the relatively large mesh sizes used. Inspectation 
of each term separately leads to the conclusion that the wavefunction must be 
more accurate for large r than for small r. The error in (r-l) is much larger than 
would be expected from the numerical integration, thus this error must originate 
in the finite-difference approximations used in solving the Schroedinger equation. 
That this error is larger than that for (rl) and (r2) is reasonable because the solution 
is obtained by making the eigenvalue and the total energy self-consistent. Since the 
eigenvalue term dominates over the potential terms for large radii, the solution has 
been tuned for the larger radial values. 

The value of (r;‘) is equal to (r;l) for symmetric or antisymmetric functions, 
so the term (r-l) is directly proportional to the electron-nuclear potential energy. 
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With this realization, the {r’l) calculations show that the interpolation process 
does not improve the numerical integration for this potential, and the error in the 
electron-nuclear potential can be attributed to the method of obtaining the 
numerical solution. 

Reference to Table II shows that the kinetic and electron-electron energies have 
the same magnitude of error as the electron-nuclear potential energy. Again, 
these errors must primarily originate in the finite-difference approximations. 
When the total energy is computed, the errors in the individual energies tend to 
cancel each other to produce an excellent answer for this quantity. Because this 
was observed for both helium states, (IlS, 23S), the cancellation was considered 
to be related to the variational principle which states the total energy is of second- 
order error in the wavefunction, whereas most other operator expectation values 
are of first order. 

The first-excited state has a symmetric spin function and therefore must have 
an antisymmetric spatial wavefunction upon electron exchange. This symmetry 
has one notable advantage over the ground-state symmetry. That is, the anti- 
symmetry requirement forces x to vanish when rl = r2 and completely removes 
the spike in the integrand used to compute (I/r,,). Without the spike, an uninter- 
polated result can be used with a considerable savings in computer time. 

To initialize the problem, an rmax , input eigenvalue, and a starting wave vector 
must be chosen. Using Pekeris’ result for the root mean square radius, 
(rs)1/2 = 3.39, as a guide, rmax was chosen to be 12.0 for the 23s state. For the 
starting vector the two-parameter antisymmetrized wavefunction by Eckart [7] 
was used. This function is given by 

x = r,r,{exp(-22, - Zar2/W1 - &r2/2) 
- r,r2+xp(---Zir2 - ZJ,P)W - ZM), (11) 

where Zi = 2.01 and Z, = 1.53. The eigenvalue was taken to be the expectation 
value of the Hamiltonian for the wavefunction given by Eq. (11). The value of 
rmax required that a larger program be used for this calculation. This program had 
an array size of (43, 37, 43) and required 1700 iterations to achieve five figure 
agreement between the eigenvalue and the total energy. Results of this calculation 
are presented in Table VII, along with the accurate results of Pekeris. The errors 
in each term are correspondingly higher than the errors for the ground-state 
calculations. One obvious reason, is the much larger mesh size required to span 
the r domains. Another not so obvious reason was the value of rmm. Since the 
value of (r2) was too low, this meant the wavefunction was forced to zero too 
fast. A larger value of rms might improve the 23S He results, but this would 
require a larger mesh size, yielding poorer results, or more mesh points which 
would make the array larger than the computer memory size. 
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TABLE VII 

Helium 2*S State Results for the Converged Iterative Wavefunction 

Operator 

00 

< 1 Ird 

-2<w, + l/r,) 
0-b 

<r-9 

(r-9 

(t-l) 

<r’> 

Numerical result 
this work 

2.2077 

0.2787 

-4.6606 

-2.1741 

3.768 

1.165 

2.43 1 

10.111 

Pekeris 
result 

2.1752 

0.2682 

-4.6186 

-2.1752 

4.170 

1.155 

2.550 

11.464 

In this paper the method for the application of the finite-difference technique 
to the S-state helium system was developed and results for the helium states of 
1% and 23S presented. Comparison between this work and that of Pekeris clearly 
shows this method does work and gives reasonable answers for many expectation 
values. Although this method requires the use of a computer with a large memory, 
it is sufficiently accurate and general to warrant further study. 
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